LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting yield of individual field-grown rapeseed plants from rosette-stage leaf gene expression.

Photo from wikipedia

In the plant sciences, results of laboratory studies often do not translate well to the field. To help close this lab-field gap, we developed a strategy for studying the wiring… Click to show full abstract

In the plant sciences, results of laboratory studies often do not translate well to the field. To help close this lab-field gap, we developed a strategy for studying the wiring of plant traits directly in the field, based on molecular profiling and phenotyping of individual plants. Here, we use this single-plant omics strategy on winter-type Brassica napus (rapeseed). We investigate to what extent early and late phenotypes of field-grown rapeseed plants can be predicted from their autumnal leaf gene expression, and find that autumnal leaf gene expression not only has substantial predictive power for autumnal leaf phenotypes but also for final yield phenotypes in spring. Many of the top predictor genes are linked to developmental processes known to occur in autumn in winter-type B. napus accessions, such as the juvenile-to-adult and vegetative-to-reproductive phase transitions, indicating that the yield potential of winter-type B. napus is influenced by autumnal development. Our results show that single-plant omics can be used to identify genes and processes influencing crop yield in the field.

Keywords: grown rapeseed; leaf gene; field grown; gene expression; field

Journal Title: PLoS computational biology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.