LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nuclear re-localization of Dicer in primary mouse embryonic fibroblast nuclei following DNA damage

Photo from wikipedia

Dicer is a key component of RNA interference (RNAi) and well-known for its role in biogenesis of micro (mi)RNA in the cytoplasm. Increasing evidence suggests that mammalian Dicer is also… Click to show full abstract

Dicer is a key component of RNA interference (RNAi) and well-known for its role in biogenesis of micro (mi)RNA in the cytoplasm. Increasing evidence suggests that mammalian Dicer is also present and active in the nucleus. We have previously shown that phosphorylated human Dicer associates with chromatin in response to DNA damage and processes double-stranded (ds)RNA in the nucleus. However, a recent study by Much et al. investigated endogenously tagged HA-Dicer both in primary mouse embryonic fibroblasts (PMEFs) as well as adult homozygous viable and fertile HA-Dicer mice under physiological conditions and concluded that murine Dicer is exclusively cytoplasmic. The authors challenged several findings, reporting functions of Dicer in mammalian nuclei. We have re-investigated this issue by applying subcellular fractionation, super-resolution microscopy followed by 3D reconstitution, and phospho-Dicer-specific antibodies using the same HA-Dicer PMEF cell line. Our data show that a small fraction of the murine HA-Dicer pool, approximately 5%, localises in the nucleus and is phosphorylated upon DNA damage. We propose that Dicer localisation is dynamic and not exclusively cytoplasmic, particularly in cells exposed to DNA damage.

Keywords: dna damage; dicer; primary mouse; mouse embryonic; dicer primary

Journal Title: PLoS Genetics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.