LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conditional knockdown of transformer in sheep blow fly suggests a role in repression of dosage compensation and potential for population suppression.

Photo by rodlong from unsplash

The transformer (tra) gene is essential for female development in many insect species, including the Australian sheep blow fly, Lucilia cuprina. Sex-specific tra RNA splicing is controlled by Sex lethal… Click to show full abstract

The transformer (tra) gene is essential for female development in many insect species, including the Australian sheep blow fly, Lucilia cuprina. Sex-specific tra RNA splicing is controlled by Sex lethal (Sxl) in Drosophila melanogaster but is auto-regulated in L. cuprina. Sxl also represses X chromosome dosage compensation in female D. melanogaster. We have developed conditional Lctra RNAi knockdown strains using the tet-off system. Four strains did not produce females on diet without tetracycline and could potentially be used for genetic control of L. cuprina. In one strain, which showed both maternal and zygotic tTA expression, most XX transformed males died at the pupal stage. RNAseq and qRT-PCR analyses of mid-stage pupae showed increased expression of X-linked genes in XX individuals. These results suggest that Lctra promotes somatic sexual differentiation and inhibits X chromosome dosage compensation in female L. cuprina. However, XX flies homozygous for a loss-of-function Lctra knockin mutation were fully transformed and showed high pupal eclosion. Two of five X-linked genes examined showed a significant increase in mRNA levels in XX males. The stronger phenotype in the RNAi knockdown strain could indicate that maternal Lctra expression may be essential for initiation of dosage compensation suppression in female embryos.

Keywords: blow fly; sheep blow; dosage compensation; transformer; dosage

Journal Title: PLoS genetics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.