LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Human vascular endothelial cells express epithelial growth factor in response to infection by Bartonella bacilliformis

Photo by cdc from unsplash

Bartonella are Gram-negative bacterial pathogens that trigger pathological angiogenesis during infection of humans. Bartonella bacilliformis (Bb) is a neglected tropical agent endemic to South America, where it causes Carrión’s disease.… Click to show full abstract

Bartonella are Gram-negative bacterial pathogens that trigger pathological angiogenesis during infection of humans. Bartonella bacilliformis (Bb) is a neglected tropical agent endemic to South America, where it causes Carrión’s disease. Little is known about Bb’s virulence determinants or how the pathogen elicits hyperproliferation of the vasculature, culminating in Peruvian warts (verruga peruana) of the skin. In this study, we determined that active infection of human umbilical vein endothelial cells (HUVECs) by live Bb induced host cell secretion of epidermal growth factor (EGF) using ELISA. Killed bacteria or lysates of various Bb strains did not cause EGF production, suggesting that an active infection was necessary for the response. Bb also caused hyperproliferation of infected HUVECs, and the mitogenic response could be inhibited by the EGF-receptor (EGFR) inhibitor, AG1478. Bb strains engineered to overexpress recombinant GroEL, evoked greater EGF production and hyperproliferation of HUVECs compared to control strains. Conditioned (spent) media from cultured HUVECs that had been previously infected by Bb were found to be mitogenic for naïve HUVECs, and the response could be inhibited by EGFR blocking with AG1478. Bb cells and cell lysates stimulated HUVEC migration and capillary-like tube formation in transmigration and Matrigel assays, respectively. To our knowledge, this is the first demonstration of EGF production by Bb-infected endothelial cells; an association that could contribute to hyperproliferation of the vascular bed during bartonellosis.

Keywords: response; bartonella bacilliformis; infection; growth factor; endothelial cells

Journal Title: PLoS Neglected Tropical Diseases
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.