INTRODUCTION A number of neglected tropical diseases are targeted for elimination or eradication. An effective surveillance system is critical to determine if these goals have been achieved and maintained. Trachoma… Click to show full abstract
INTRODUCTION A number of neglected tropical diseases are targeted for elimination or eradication. An effective surveillance system is critical to determine if these goals have been achieved and maintained. Trachoma has two related but morphologically different presentations that are monitored for elimination, the active infectious form of trachoma and trachomatous trichiasis (TT), the progression of the disease. There are a number of lessons learnt from the Guinea worm surveillance system that are particularly compatible for TT surveillance and the onchocerciasis surveillance system which can provide insights for surveillance of the infectious form of trachoma. METHODS/PRINCIPAL FINDINGS A literature search of peer-reviewed published papers and grey literature was conducted using PUBMED and Google Scholar for articles relating to dracunculiasis or Guinea worm, onchocerciasis and trachoma, along with surveillance or elimination or eradication. The abstracts of relevant papers were read and inclusion was determined based on specified inclusion and exclusion criteria. The credibility and bias of relevant papers were also critically assessed using published criteria. A total of 41 papers were identified that were eligible for inclusion into the review. The Guinea worm programme is designed around a surveillance-containment strategy and combines both active and passive surveillance approaches, with a focus on village-based surveillance and reporting. Although rumour reporting and a monetary incentive for the identification of confirmed Guinea worm cases have been reported as successful for identifying previously unknown transmission there is little unbiased evidence to support this conclusion. More rigorous evidence through a randomised controlled trial, influenced by motivational factors identified through formative research, would be necessary in order to consider applicability for TT case finding in an elimination setting. The onchocerciasis surveillance strategy focuses on active surveillance through sentinel surveillance of villages and breeding sites. It relies on an entomological component, monitoring infectivity rates of black flies and an epidemiological component, tracking exposure to infection in humans. Challenges have included the introduction of relatively complex diagnostics that are not readily available in onchocerciasis endemic countries and target thresholds, which are practically unattainable with current diagnostic tests. Although there is utility in monitoring for infection and serological markers in trachoma surveillance, it is important that adequate considerations are made to ensure evidence-based and achievable guidelines for their utility are put in place. CONCLUSIONS/SIGNIFICANCE The experiences of both the Guinea worm and onchocerciasis surveillance strategies have very useful lessons for trachoma surveillance, pre- and post-validation. The use of a monetary reward for identification of TT cases and further exploration into the use of infection and serological indicators particularly in a post-validation setting to assist in identifying recrudescence would be of particular relevance. The next step would be a real-world evaluation of their relative applicability for trachoma surveillance.
               
Click one of the above tabs to view related content.