LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of Alstrom Syndrome 1 (ALMS1) Transcript Variants in Hodgkin Lymphoma Cells

Photo by nci from unsplash

The Alstrom syndrome gene (ALMS1) is one of the largest disease associated genes identified today in the human genome and is implicated in cell cycle control, ciliogenesis, endosome recycling and… Click to show full abstract

The Alstrom syndrome gene (ALMS1) is one of the largest disease associated genes identified today in the human genome and is implicated in cell cycle control, ciliogenesis, endosome recycling and intracellular transport mechanisms. ALMS1 mutations cause Alstrom syndrome, a rare genetic disorder. However, its function is not completely understood. DNA microarray analysis suggested that ALMS1 might be differentially expressed between Hodgkin lymphoma (HL) cells and normal tissues. By using reverse transcription-polymerase chain reaction (RT-PCR) we detected low but variable expression of ALMS1 in HL cell lines with highest expression in KM-H2 cells. Immunofluorescence indicated centrosomal accumulation of ALMS1 protein in HL cells. Knock-down of ALMS1 in KM-H2 cells had no impact on viability or cytotoxic drug sensitivity of these cells. Sequencing of RT-PCR products from HL cell lines identified three variable regions in ALMS1 transcripts that affect exons 2, 13, and 23. One of these variants was characterized by splicing out of exon 13. The other variants are characterized by two alternative 5 prime ends or alternative 3 prime ends. Structure prediction of the corresponding RNAs and proteins suggest that the different transcript variants might affect posttranscriptional regulation and ligand binding.

Keywords: hodgkin lymphoma; alstrom syndrome; lymphoma cells; transcript variants; alms1

Journal Title: PLoS ONE
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.