Recently, brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs) have been shown to achieve remarkable communication speeds. As they use electroencephalography (EEG) as non-invasive method for recording neural signals,… Click to show full abstract
Recently, brain-computer interfaces (BCIs) based on visual evoked potentials (VEPs) have been shown to achieve remarkable communication speeds. As they use electroencephalography (EEG) as non-invasive method for recording neural signals, the application of gel-based EEG is time-consuming and cumbersome. In order to achieve a more user-friendly system, this work explores the usability of dry EEG electrodes with a VEP-based BCI. While the results show a high variability between subjects, they also show that communication speeds of more than 100 bit/min are possible using dry EEG electrodes. To reduce performance variability and deal with the lower signal-to-noise ratio of the dry EEG electrodes, an averaging method and a dynamic stopping method were introduced to the BCI system. Those changes were shown to improve performance significantly, leading to an average classification accuracy of 76% with an average communication speed of 46 bit/min, which is equivalent to a writing speed of 8.8 error-free letters per minute. Although the BCI system works substantially better with gel-based EEG, dry EEG electrodes are more user-friendly and still allow high-speed BCI communication.
               
Click one of the above tabs to view related content.