LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Occurrence of mitochondrial CO1 pseudogenes in Neocalanus plumchrus (Crustacea: Copepoda): Hybridization indicated by recombined nuclear mitochondrial pseudogenes

Photo from wikipedia

A portion of the mitochondrial cytochrome c oxidase I gene was sequenced using both genomic DNA and complement DNA from three planktonic copepod Neocalanus species (N. cristatus, N. plumchrus, and… Click to show full abstract

A portion of the mitochondrial cytochrome c oxidase I gene was sequenced using both genomic DNA and complement DNA from three planktonic copepod Neocalanus species (N. cristatus, N. plumchrus, and N. flemingeri). Small but critical sequence differences in CO1 were observed between gDNA and cDNA from N. plumchrus. Furthermore, careful observation revealed the presence of recombination between sequences in gDNA from N. plumchrus. Moreover, a chimera of the N. cristatus and N. plumchrus sequences was obtained from N. plumchrus gDNA. The observed phenomena can be best explained by the preferential amplification of the nuclear mitochondrial pseudogenes from gDNA of N. plumchrus. Two conclusions can be drawn from the observations. First, nuclear mitochondrial pseudogenes are pervasive in N. plumchrus. Second, a mating between a female N. cristatus and a male N. plumchrus produced viable offspring, which further backcrossed to a N. plumchrus individual. These observations not only demonstrate intriguing mating behavior in these species, but also emphasize the importance of careful interpretation of species marker sequences amplified from gDNA.

Keywords: nuclear mitochondrial; occurrence mitochondrial; mitochondrial pseudogenes; plumchrus; co1 pseudogenes; mitochondrial co1

Journal Title: PLoS ONE
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.