Infection has long been suspected as a trigger of autoimmune diseases, and molecular mimicry mechanism was hypothesized in this study. Microbe originated peptides were searched from the Uniprot database based… Click to show full abstract
Infection has long been suspected as a trigger of autoimmune diseases, and molecular mimicry mechanism was hypothesized in this study. Microbe originated peptides were searched from the Uniprot database based on a previous defined critical amino acid motif within α3129−150, isoleucine137, tryptophan140, glycine142, phenylalanine 143 and phenylalanine 145. 23826 microbial peptides were identified using our searching strategy, among which seven were related with human infections. Circulating IgG and IgM antibodies against the seven microbial peptides were detected using ELISA in 76 patients with anti-GBM disease. Four peptides were recognized by both IgG and IgM antibodies, and one peptide was recognized by IgG antibodies only. Peptides from Bacteroides, Saccharomyces cerevisiae, and Bifidobacterium thermophilum possessed the highest recognition frequency with the prevalence of 73.7%, 61.8% and 67.1% for IgG, 56.6%, 44.7% and 67.1% for IgM in anti-GBM patients. Patients with antibodies against these microbial peptides showed more severe kidney injury, including higher serum creatinine and higher percentage of crescent formation. In conclusion, antibodies against microbial peptides were identified in the circulation of anti-GBM patients, implying its etiological role in eliciting autoimmune response against α3(IV)NC1 through molecular mimicry.
               
Click one of the above tabs to view related content.