According to most models of mycobacterial infection, inhibition of the pro-inflammatory macrophage immune responses contributes to the persistence of bacteria. Mycobacterium avium subsp. paratuberculosis (MAP) is a highly successful pathogen… Click to show full abstract
According to most models of mycobacterial infection, inhibition of the pro-inflammatory macrophage immune responses contributes to the persistence of bacteria. Mycobacterium avium subsp. paratuberculosis (MAP) is a highly successful pathogen in cattle and sheep and is also implicated as the causative agent of Crohn’s disease in humans. Pathogenic mycobacteria such as MAP have developed multiple strategies to evade host defence mechanisms including interfering with the macrophages’ capacity to respond to IFN-γ, a feature which might be lacking in non-pathogenic mycobacteria such as M. smegmatis. We hypothesized that pre-sensitisation of macrophages with the pro-inflammatory cytokine IFN-γ would help in overcoming the inhibitory effect of MAP or its antigens on macrophage inflammatory responses. Herein we have compared a series of macrophage activation parameters in response to MAP and M. smegmatis as well as mycobacterial antigens. While IFN-γ did overcome the inhibition in immune suppressive mechanisms in response to MAP antigen as well as M. smegmatis, we could not find a clear role for IFN-γ in overcoming the inhibition of macrophage inflammatory responses to the pathogenic mycobacterium, MAP. We demonstrate that suppression of macrophage defence mechanisms by pathogenic mycobacteria is unlikely to be overcome by prior sensitization with IFN-γ alone. This indicates that IFN-γ signaling pathway-independent mechanisms may exist for overcoming inhibition of macrophage effector functions in response to pathogenic mycobacteria. These findings have important implications in understanding the survival mechanisms of pathogenic mycobacteria directed towards finding better therapeutics and vaccination strategies.
               
Click one of the above tabs to view related content.