LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An independently reconfigurable dual-mode dual-band substrate integrated waveguide filter

Photo by ohkimmyphoto from unsplash

In this paper, a novel perturbation approach for implementing the independently reconfigurable dual-mode dual-band substrate integrated waveguide (SIW) filter is proposed. Dual-frequency manipulation is achieved by adding perturbation via-holes (the… Click to show full abstract

In this paper, a novel perturbation approach for implementing the independently reconfigurable dual-mode dual-band substrate integrated waveguide (SIW) filter is proposed. Dual-frequency manipulation is achieved by adding perturbation via-holes (the first variable) and changing the lengths of the interference slot (the second variable) in each cavity. The independent control of the upper passband only depends on the second variable while the lower passband is independently tuned by combining the two variables. Using such a design method, a two-cavity dual-band SIW filter is designed and experimentally assessed with four via-holes and an interference slot in each cavity. The dual-band filter not only has a frequency ratio (fR) ranging from 1.14 to 1.58 but also can be considered as a single passband one with a tunable range of 40.5% from 1.26 GHz to 2.12 GHz. The scattering parameters |S11| and |S21| are in the range of -10.72 dB to -37.17 dB and -3.67 dB to -7.22 dB in the operating dual bands, respectively. All the simulated and measured results show an acceptable agreement with the predicted data.

Keywords: dual mode; dual band; band; filter; independently reconfigurable; reconfigurable dual

Journal Title: PLoS ONE
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.