LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cyclic stretch induced IL-33 production through HMGB1/TLR-4 signaling pathway in murine respiratory epithelial cells

Photo by belart84 from unsplash

Interleukin 33 (IL-33), an inflammatory and mechanically responsive cytokine, is an important component of a TLR4-dependent innate immune process in mucosal epithelium. Although TLR4 also plays a role in sensing… Click to show full abstract

Interleukin 33 (IL-33), an inflammatory and mechanically responsive cytokine, is an important component of a TLR4-dependent innate immune process in mucosal epithelium. Although TLR4 also plays a role in sensing biomechanical stretch, a pathway of stretch-induced TLR4-dependent IL-33 biosynthesis has not been revealed. In the current study, we show that short term (6 h) cyclic stretch (CS) of cultured murine respiratory epithelial cells (MLE-12) increased intracellular IL-33 expression in a TLR4 dependent fashion. There was no detectable IL-33 in conditioned media in this interval. CS, however, increased release of the notable alarmin, HMGB1, and a neutralizing antibody (2G7) to HMGB1 completely abolished the CS mediated increase in IL-33. rHMGB1 increased IL-33 synthesis and this was partially abrogated by silencing TLR4 suggesting additional receptors for HMGB1 are involved in its regulation of IL-33. Collectively, these data reveal a HMGB1/TLR4/IL-33 pathway in the response of respiratory epithelium to mechanical stretch.

Keywords: hmgb1; stretch; stretch induced; cyclic stretch; murine respiratory

Journal Title: PLoS ONE
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.