Entomopathogenic fungi are known for their ability to carry out glycosylation of flavonoids, which usually results in the improvement of their stability and bioavailability. In this study we used a… Click to show full abstract
Entomopathogenic fungi are known for their ability to carry out glycosylation of flavonoids, which usually results in the improvement of their stability and bioavailability. In this study we used a newly isolated strain of the entomopathogenic filamentous fungus Isaria fumosorosea KCH J2 as a biocatalyst. Our aim was to evaluate its ability to carry out the biotransformation of flavonoids and to obtain new flavonoid derivatives. The fungus was isolated from a spider’s carcass and molecularly identified using analysis of the ITS1-ITS2 rDNA sequence. As a result of biotransformation of 6-methylflavone two new products were obtained: 6-methylflavone 8-O-β-D-(4”-O-methyl)-glucopyranoside and 6-methylflavone 4’-O-β-D-(4”-O-methyl)-glucopyranoside. Chemical structures of the products were determined based on spectroscopic methods (1H NMR, 13C NMR, COSY, HMBC, HSQC). Our research allowed us to discover a new species of filamentous fungus capable of carrying out glycosylation reactions and proved that I. fumosorosea KCH J2 is an effective biocatalyst for glycosylation of flavonoid compounds. For the first time we describe biotransformations of 6-methylflavone and the attachment of the sugar unit to the flavonoid substrate having no hydroxyl group. The possibility of using flavonoid aglycones is often limited by their low bioavailability due to poor solubility in water. The incorporation of a sugar unit improves the physical properties of tested compounds and thus increases the chance of using them as pharmaceuticals.
               
Click one of the above tabs to view related content.