LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lithium reduces blood glucose levels, but aggravates albuminuria in BTBR-ob/ob mice

Photo by mertguller from unsplash

Glycogen synthase kinase 3 (GSK3) plays an important role in the development of diabetes mellitus and renal injury. GSK3 inhibition increases glucose uptake in insulin-insensitive muscle and adipose tissue, while… Click to show full abstract

Glycogen synthase kinase 3 (GSK3) plays an important role in the development of diabetes mellitus and renal injury. GSK3 inhibition increases glucose uptake in insulin-insensitive muscle and adipose tissue, while it reduces albuminuria and glomerulosclerosis in acute kidney injury. The effect of chronic GSK3 inhibition in diabetic nephropathy is not known. We tested the effect of lithium, the only clinical GSK3 inhibitor, on the development of diabetes mellitus and kidney injury in a mouse model of diabetic nephropathy. Twelve-week old female BTBR-ob/ob mice were treated for 12 weeks with 0, 10 and 40 mmol LiCl/kg after which the development of diabetes and diabetic nephropathy were analysed. In comparison to BTBR-WT mice, ob/ob mice demonstrated elevated bodyweight, increased blood glucose/insulin levels, urinary albumin and immunoglobulin G levels, glomerulosclerosis, reduced nephrin abundance and a damaged proximal tubule brush border. The lithium-10 and -40 diets did not affect body weight and resulted in blood lithium levels of respectively <0.25 mM and 0.48 mM. The Li-40 diet fully rescued the elevated non-fasting blood glucose levels. Importantly, glomerular filtration rate was not affected by lithium, while urine albumin and immunoglobulin G content were further elevated. While lithium did not worsen the glomerulosclerosis, proximal tubule function seemed affected by lithium, as urinary NGAL levels were significantly increased. These results demonstrate that lithium attenuates non-fasting blood glucose levels in diabetic mice, but aggravates urinary albumin and immunoglobulin G content, possibly resulting from proximal tubule dysfunction.

Keywords: glucose levels; lithium; btbr mice; blood glucose

Journal Title: PLoS ONE
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.