LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Caveat emptor, computational social science: Large-scale missing data in a widely-published Reddit corpus

Photo from wikipedia

As researchers use computational methods to study complex social behaviors at scale, the validity of this computational social science depends on the integrity of the data. On July 2, 2015,… Click to show full abstract

As researchers use computational methods to study complex social behaviors at scale, the validity of this computational social science depends on the integrity of the data. On July 2, 2015, Jason Baumgartner published a dataset advertised to include “every publicly available Reddit comment” which was quickly shared on Bittorrent and the Internet Archive. This data quickly became the basis of many academic papers on topics including machine learning, social behavior, politics, breaking news, and hate speech. We have discovered substantial gaps and limitations in this dataset which may contribute to bias in the findings of that research. In this paper, we document the dataset, substantial missing observations in the dataset, and the risks to research validity from those gaps. In summary, we identify strong risks to research that considers user histories or network analysis, moderate risks to research that compares counts of participation, and lesser risk to machine learning research that avoids making representative claims about behavior and participation on Reddit.

Keywords: social science; research; risks research; reddit; computational social

Journal Title: PLoS ONE
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.