LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolution and expression analyses of the MADS-box gene family in Brassica napus

Photo by ospanali from unsplash

MADS-box transcription factors are important for plant growth and development, and hundreds of MADS-box genes have been functionally characterized in plants. However, less is known about the functions of these… Click to show full abstract

MADS-box transcription factors are important for plant growth and development, and hundreds of MADS-box genes have been functionally characterized in plants. However, less is known about the functions of these genes in the economically important allopolyploid oil crop, Brassica napus. We identified 307 potential MADS-box genes (BnMADSs) in the B. napus genome and categorized them into type I (Mα, Mβ, and Mγ) and type II (MADS DNA-binding domain, intervening domain, keratin-like domain, and C-terminal domain [MIKC]c and MIKC*) based on phylogeny, protein motif structure, and exon-intron organization. We identified one conserved intron pattern in the MADS-box domain and seven conserved intron patterns in the K-box domain of the MIKCc genes that were previously ignored and may be associated with function. Chromosome distribution and synteny analysis revealed that hybridization between Brassica rapa and Brassica oleracea, segmental duplication, and homologous exchange (HE) in B. napus were the main BnMADSs expansion mechanisms. Promoter cis-element analyses indicated that BnMADSs may respond to various stressors (drought, heat, hormones) and light. Expression analyses showed that homologous genes in a given subfamily or sister pair are highly conserved, indicating widespread functional conservation and redundancy. Analyses of BnMADSs provide a basis for understanding their functional roles in plant development.

Keywords: mads box; expression analyses; brassica napus; evolution expression; domain

Journal Title: PLoS ONE
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.