LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bacterial regulation of macrophage bacterial recognition receptors in COPD are differentially modified by budesonide and fluticasone propionate

Photo from wikipedia

Rationale Patients with COPD have an increased risk for community-acquired pneumonia, which is further increased by inhaled corticosteroids. Objective To assess effects of the corticosteroids, budesonide and fluticasone propionate, on… Click to show full abstract

Rationale Patients with COPD have an increased risk for community-acquired pneumonia, which is further increased by inhaled corticosteroids. Objective To assess effects of the corticosteroids, budesonide and fluticasone propionate, on macrophage bacterial responses in COPD. Methods Monocyte-derived macrophages (MDMs) generated from blood monocytes from 10 non-smoker controls (NoS), 20 smokers without COPD (Sm), and 40 subjects with moderate to severe COPD (21 ex-smokers (COPD-ES) and 19 current smokers (COPD-S)) were pre-treated with budesonide or fluticasone (10 nM—1 μM) and challenged with live non-typeable Haemophilus influenzae (NTHI) or Streptococcus pneumoniae (SP). Cell surface bacterial recognition receptor expression (flow cytometry) and cytokine release (bead array) were analyzed. Results NTHI and SP reduced bacterial recognition receptor expression on MDMs from COPD and Sm, but not NoS (except TLR4). SR-AI and MARCO were reduced by both NTHI and SP, whereas other receptors by either NTHI or SP. Among COPD subjects, COPD-ES demonstrated a greater number of reductions as compared to COPD-S. NTHI reduced SR-AI, MARCO, CD11b, CD35 and CD206 in COPD-ES while only SR-AI and CD11b in COPD-S. SP reduced SRA-1, CD1d, TLR2 and TLR4 in both COPD-ES and COPD-S, and reduced MARCO and CD93 only in COPD-ES. All receptors reduced in COPD by NTHI and most by SP, were also reduced in Sm. Budesonide counteracted the receptor reductions induced by both NTHI (CD206 p = 0.03, MARCO p = 0.08) and SP (SR-AI p = 0.02) in COPD-ES. Fluticasone counteracted only SP-induced reductions in TLR2 (p = 0.008 COPD-ES and p = 0.04 COPD-S) and TLR4 (p = 0.02 COPD-ES). Cytokine release was equivalently reduced by both corticosteroids. Conclusions Reduction in macrophage bacterial recognition receptors during bacterial exposure could provide a mechanism for the increased pneumonia risk in COPD. Differential effects of budesonide and fluticasone propionate on macrophage bacterial recognition receptor expression may contribute to the higher pneumonia incidence reported with fluticasone propionate.

Keywords: copd; fluticasone propionate; budesonide fluticasone; bacterial recognition

Journal Title: PLoS ONE
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.