LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid control algorithm for flexible needle steering: Demonstration in phantom and human cadaver

Photo by paipai90 from unsplash

Needles are commonly used in the clinic for percutaneous procedures. The outcome of such procedures heavily depends on accurate placement of the needle. There are two main challenges to achieve… Click to show full abstract

Needles are commonly used in the clinic for percutaneous procedures. The outcome of such procedures heavily depends on accurate placement of the needle. There are two main challenges to achieve high accuracy: First, aligning the needle with the targeted lesion, and second, compensating for the deflection of the needle in the tissue. In order to address these challenges, scientists have developed several robotic setups for needle steering. However, the subject is still under research and reliable implementations which can be used in clinical practice are not yet available. In this paper, we have taken some steps in order to bring needle steering closer to practice. A new hybrid control algorithm is developed, which enables us to control a flexible needle by combing base-manipulation and beveled-tip steering methods. A pre-operative path planner is developed which considers the clinical requirements. The proposed method is tested in the lung of a fresh-frozen human cadaver. The work-flow of the experiments are similar to the current clinical practice. Three experimental cases are used to evaluate the proposed steering algorithm. Experimental Case I shows that using the proposed steering algorithm controllability of the needle is increased. In Case II and Case III, the needle is steered in a gelatin phantom and a human cadaver, respectively. The targeting accuracy of 1.35±0.49mm in gelatin phantom and 1.97±0.89mm in cadave is achieved. A feasibility study is performed, in which a fine needle aspiration (FNA) needle is steered in the lungs of a human cadaver under computed tomography guidance. The targeting error for the feasibility study is 2.89±0.22mm. The results suggest that such a robotic system can be beneficial for clinical use and the patient receives less x-ray radiation.

Keywords: cadaver; hybrid control; human cadaver; needle steering; control algorithm

Journal Title: PLoS ONE
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.