LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Risk assessment of earthquake network public opinion based on global search BP neural network

Photo from wikipedia

Background The article proposes a network public opinion risk assessment model for earthquake disasters, which can provide an effective support for emergency departments of China. Method It uses the accelerated… Click to show full abstract

Background The article proposes a network public opinion risk assessment model for earthquake disasters, which can provide an effective support for emergency departments of China. Method It uses the accelerated genetic algorithm (AGA) to improve BP neural network. The main contents: This article selects 10 indexes by using the methods of the principal component analysis (PCA) and cumulative contribution (CC) to assess the risk of the earthquake network public opinion. The article designs a BP algorithm to measure the risk degree of the earthquake network public opinion and uses AGA to improve the BP model for parameter optimization. Results The experiment results of the improved BP model shows that its global error is 7.12×10, and the error is reduced to 22.35%, which showed the improving BP model has advantages in convergence speed and evaluation accuracy. Conclusion The risk assessment method of network public opinion can be used in the practice of earthquake disaster decision.

Keywords: risk; public opinion; network; network public; earthquake

Journal Title: PLoS ONE
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.