The highly repetitive DNA sequence of centromeric heterochromatin is an effective molecular cytogenetic marker for investigating genomic compartmentalization between macrochromosomes and microchromosomes in birds. We isolated four repetitive sequence families… Click to show full abstract
The highly repetitive DNA sequence of centromeric heterochromatin is an effective molecular cytogenetic marker for investigating genomic compartmentalization between macrochromosomes and microchromosomes in birds. We isolated four repetitive sequence families of centromeric heterochromatin from three Anseriformes species, viz., domestic duck (Anas platyrhynchos, APL), bean goose (Anser fabalis, AFA), and whooper swan (Cygnus cygnus, CCY), and characterized the sequences by molecular cytogenetic approach. The 190-bp APL-HaeIII and 101-bp AFA-HinfI-S sequences were localized in almost all chromosomes of A. platyrhynchos and A. fabalis, respectively. However, the 192-bp AFA-HinfI-L and 290-bp CCY-ApaI sequences were distributed in almost all microchromosomes of A. fabalis and in approximately 10 microchromosomes of C. cygnus, respectively. APL-HaeIII, AFA-HinfI-L, and CCY-ApaI showed partial sequence homology with the chicken nuclear-membrane-associated (CNM) repeat families, which were localized primarily to the centromeric regions of microchromosomes in Galliformes, suggesting that ancestral sequences of the CNM repeat families are observed in the common ancestors of Anseriformes and Galliformes. These results collectively provide the possibility that homogenization of centromeric heterochromatin occurred between microchromosomes in Anseriformes and Galliformes; however, homogenization between macrochromosomes and microchromosomes also occurred in some centromeric repetitive sequences.
               
Click one of the above tabs to view related content.