Mutations are not identified in ~5% of hemophilia A and 10–35% of type 1 VWD patients. The bleeding tendency also varies among patients carrying the same causative mutation, potentially indicating… Click to show full abstract
Mutations are not identified in ~5% of hemophilia A and 10–35% of type 1 VWD patients. The bleeding tendency also varies among patients carrying the same causative mutation, potentially indicating variants in additional genes modifying the phenotype that cannot be identified by routine single-gene analysis. The F8, F9 and VWF genes were analyzed in parallel using an AmpliSeq strategy and Ion Torrent sequencing. Targeting all exonic positions showed an average read depth of >2000X and coverage close to 100% in 24 male patients with known disease-causing mutations. Discrimination between reference alleles and alternative/indel alleles was adequate at a 25% frequency threshold. In F8, F9 and VWF there was an absolute majority of all reference alleles at allele frequencies >95% and the average alternative allele and indel frequencies never reached above 10% and 15%, respectively. In VWF, 4–5 regions showed lower reference allele frequencies; in two regions covered by the pseudogene close to the 25% cut-off for reference alleles. All known mutations, including indels, gross deletions and substitutions, were identified. Additional VWF variants were identified in three hemophilia patients. The presence of additional mutations in 2 out of 16 (12%) randomly selected hemophilia patients indicates a potential mutational contribution that may affect the disease phenotype and counseling in these patients. Parallel identification of disease-causing mutations in all three genes not only confirms the deficiency, but differentiates phenotypic overlaps and allows for correct genetic counseling.
               
Click one of the above tabs to view related content.