LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational analysis of high-risk SNPs in human CHK2 gene responsible for hereditary breast cancer: A functional and structural impact

Photo from wikipedia

Nowadays CHK2 mutation is studied frequently in hereditary breast and ovarian cancer patients in addition to BRCA1/BRCA2. CHK2 is a tumor suppressor gene that encodes a serine/threonine kinase, also involved… Click to show full abstract

Nowadays CHK2 mutation is studied frequently in hereditary breast and ovarian cancer patients in addition to BRCA1/BRCA2. CHK2 is a tumor suppressor gene that encodes a serine/threonine kinase, also involved in pathways such as DNA repair, cell cycle regulation and apoptosis in response to DNA damage. CHK2 is a well-studied moderate penetrance gene that correlates with third high risk susceptibility gene with an increased risk for breast cancer. Hence before planning large population study, it is better to scrutinize putative functional SNPs of CHK2 using different computational tools. In this study, we have used various computational approaches to identify nsSNPs which are deleterious to the structure and/or function of CHK2 protein that might be causing this disease. Computational analysis was performed by different in silico tools including SIFT, Align GVGD, SNAP-2, PROVEAN, Poly-Phen-2, PANTHER, PhD-SNP, MUpro, iPTREE-STAB, Consurf, InterPro, NCBI Conserved Domain Search tool, ModPred, SPARKS-X, RAMPAGE, Verify-3D, FT Site, COACH and PyMol. Out of 78 nsSNP of human CHK2 gene, seven nsSNPs were predicted functionally most significant SNPs. Among these seven nsSNP, p.Arg160Gly, p.Gly210Arg and p.Ser415Phe are highly conserved residues with conservation score of 9 and three nsSNP were predicted to be involved in post translational modification. The p.Arg160Gly and p.Gly210Arg may interfere in phosphopeptide binding site on FHA conserved domain. The p.Ser415Phe may interfere in formation of activation loop of protein-kinase domain and might interfere in interactions of CHK2 with ligand. The study concludes that mutation of serine to phenylalanine at position 415 is a major mutation in native CHK2 protein which might contribute to its malfunction, ultimately causing disease. This is the first comprehensive study, where CHK2 gene variants are analyzed using in silico tools hence it will be of great help while considering large scale studies and also in developing precision medicines related to these polymorphisms in the era of personalized medicine.

Keywords: risk; breast; chk2 gene; chk2; cancer; gene

Journal Title: PLoS ONE
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.