Ti-6Al-4V is commonly used in orthopaedic implants, and fabrication techniques such as Powder Bed Fusion (PBF) are becoming increasingly popular for the net-shape production of such implants, as PBF allows… Click to show full abstract
Ti-6Al-4V is commonly used in orthopaedic implants, and fabrication techniques such as Powder Bed Fusion (PBF) are becoming increasingly popular for the net-shape production of such implants, as PBF allows for complex customisation and minimal material wastage. Present research into PBF fabricated Ti-6Al-4V focuses on new design strategies (e.g. designing pores, struts or lattices) or mechanical property optimisation through process parameter control–however, it is pertinent to examine the effects of altering PBF process parameters on properties relating to bioactivity. Herein, changes in Ti-6Al-4V microstructure, mechanical properties and surface characteristics were examined as a result of varying PBF process parameters, with a view to understanding how to tune Ti-6Al-4V bio-activity during the fabrication stage itself. The interplay between various PBF laser scan speeds and laser powers influenced Ti-6Al-4V hardness, porosity, roughness and corrosion resistance, in a manner not clearly described by the commonly used volumetric energy density (VED) design variable. Key findings indicate that the relationships between PBF process parameters and ultimate Ti-6Al-4V properties are not straightforward as expected, and that wide ranges of porosity (0.03 ± 0.01% to 32.59 ± 2.72%) and corrosion resistance can be achieved through relatively minor changes in process parameters used–indicating volumetric energy density is a poor predictor of PBF Ti-6Al-4V properties. While variations in electrochemical behaviour with respect to the process parameters used in the PBF fabrication of Ti-6Al-4V have previously been reported, this study presents data regarding important surface characteristics over a large process window, reflecting the full capabilities of current PBF machinery.
               
Click one of the above tabs to view related content.