LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor

Photo from wikipedia

Plant NLRs are modular immune receptors that trigger rapid cell death in response to attempted infection by pathogens. A highly conserved nucleotide-binding domain shared with APAF-1, various R-proteins and CED-4… Click to show full abstract

Plant NLRs are modular immune receptors that trigger rapid cell death in response to attempted infection by pathogens. A highly conserved nucleotide-binding domain shared with APAF-1, various R-proteins and CED-4 (NB-ARC domain) is proposed to act as a molecular switch, cycling between ADP (repressed) and ATP (active) bound forms. Studies of plant NLR NB-ARC domains have revealed functional similarities to mammalian homologues, and provided insight into potential mechanisms of regulation. However, further advances have been limited by difficulties in obtaining sufficient yields of protein suitable for structural and biochemical techniques. From protein expression screens in Escherichia coli and Sf9 insect cells, we defined suitable conditions to produce the NB-ARC domain from the tomato NLR NRC1. Biophysical analyses of this domain showed it is a folded, soluble protein. Structural studies revealed the NRC1 NB-ARC domain had co-purified with ADP, and confirmed predicted structural similarities between plant NLR NB-ARC domains and their mammalian homologues.

Keywords: biochemical studies; structural biochemical; plant nlr; domain; arc domain

Journal Title: PLoS ONE
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.