The formation of the sea urchin spicule skeleton requires the participation of hydrogel-forming protein families that regulate mineral nucleation and nanoparticle assembly processes that give rise to the spicule. However,… Click to show full abstract
The formation of the sea urchin spicule skeleton requires the participation of hydrogel-forming protein families that regulate mineral nucleation and nanoparticle assembly processes that give rise to the spicule. However, the structure and molecular behavior of these proteins is not well established, and thus our ability to understand this process is hampered. We embarked on a study of sea urchin spicule proteins using a combination of biophysical and bioinformatics techniques. Our biophysical findings indicate that recombinant variants of the two most studied spicule matrix proteins, SpSM50 and SpSM30B/C (S. purpuratus) have a conformational landscape that include a C-terminal random coil/intrinsically disordered MAPQG sequence coupled to a conserved, folded N-terminal C-type lectin-like (CTLL) domain, with SpSM50 > SpSM30B/C with regard to intrinsic disorder. Both proteins possess solvent-accessible unfolded MAQPG sequence regions where Asn, Gln, and Arg residues may be accessible for protein hydrogel interactions with water molecules. Our bioinformatics study included seven other spicule matrix proteins where we note similarities between these proteins and rare, unusual proteins that possess folded and unfolded traits. Moreover, spicule matrix proteins possess three types of sequences: intrinsically disordered, amyloid-like, and folded protein-protein interactive. Collectively these reactive domains would be capable of driving protein assembly and hydrogel formation. Interestingly, three types of global conformations are predicted for the nine member protein set, wherein we note variations in the arrangement of intrinsically disordered and interactive globular domains. These variations may reflect species-specific requirements for spiculogenesis. We conclude that the molecular landscape of spicule matrix protein families enables them to function as hydrogelators, nucleators, and assemblers of mineral nanoparticles.
               
Click one of the above tabs to view related content.