LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sensitivity of the fasciae to sex hormone levels: Modulation of collagen-I, collagen-III and fibrillin production

Photo from wikipedia

Although it is now recognized that women suffer from myofascial pain to a greater extent than men, and that the muscular fasciae can respond to hormonal stimuli, thanks to the… Click to show full abstract

Although it is now recognized that women suffer from myofascial pain to a greater extent than men, and that the muscular fasciae can respond to hormonal stimuli, thanks to the expression of sex hormone receptors, how the fasciae can modify their structure under hormonal stimulation is not clear. In this work, an immunocytochemical analysis of collagen-I, collagen-III and fibrillin were carried out on fibroblasts isolated from human fascia lata after in vitro treatment with various levels of sex hormones β-estradiol and/or relaxin-1, according to the phases of a woman’s period (follicular, periovulatory, luteal, post-menopausal phases and pregnancy). This study demonstrates for the first time that fascial cells can modulate the production of some components of the extracellular matrix according to hormone levels, when treated with β-estradiol: collagen-I falls from 6% of positivity in the follicular phase to 1.9 in the periovulatory phase. However, after the addition of relaxin-1 to the cell culture, the production of extracellular matrix decreased and remained at the same level (1.7% of collagen-I, at both follicular and periovulatory levels of hormones). These results confirm the antifibrotic function of relaxin-1, thanks to its ability to reduce matrix synthesis. They are also a first step in our understanding of how some hormonal dysfunctions in women can cause a dysregulation of extracellular matrix production in fasciae.

Keywords: collagen; collagen collagen; production; sex hormone

Journal Title: PLoS ONE
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.