LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antimicrobial activity of Ib-M peptides against Escherichia coli O157: H7

Photo from wikipedia

The development of new antimicrobial peptides has become an attractive alternative to conventional antibiotics due to the increasing rates of microbial drug resistance. Ib-M corresponds to a family of cationic… Click to show full abstract

The development of new antimicrobial peptides has become an attractive alternative to conventional antibiotics due to the increasing rates of microbial drug resistance. Ib-M corresponds to a family of cationic synthetic peptides, 20 amino acids in length, that have shown inhibitory effect against the non-pathogenic strain Escherichia coli K-12. This work evaluated the antimicrobial potential of Ib-M peptides against the pathogenic E. coli O157: H7 using a reference strain and a clinical isolate. The Ib-M peptides showed antibacterial activity against both strains of E. coli O157: H7; the minimum inhibitory concentration of Ib-M peptides ranged from 1.6 to 12.5 μM and the minimum bactericidal concentration ranged from 3.7 to 22.9 μM, being Ib-M1 and Ib-M2 the peptides that presented the highest inhibitory effect. Time-kill kinetics assay showed a reduction of the bacterial population by more than 95% after 4 hours of exposure to 1xMIC of Ib-M1. Low cytotoxicity was observed in VERO cells with 50% cytotoxic concentration in the range from 197.5 to more than 400 μM. All peptides showed a random structure in hydrophilic environments, except Ib-M1, and all of them transitioned to an α-helical structure when the hydrophobicity of the medium was increased. In conclusion, these findings support the in vitro antimicrobial effect of Ib-M peptides against the pathogenic bacteria E. coli O157: H7 and prove to be promising molecules for the development of new therapeutic alternatives.

Keywords: activity peptides; escherichia coli; antimicrobial activity; coli o157; peptides escherichia

Journal Title: PLoS ONE
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.