LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modifiable motion graphics for capturing sensations

Photo by cassidykdickens from unsplash

Objective The purpose of this study was to assess the relationship between an embodied sensory experience and the ability to translate the perception of this experience visually using modifiable motion… Click to show full abstract

Objective The purpose of this study was to assess the relationship between an embodied sensory experience and the ability to translate the perception of this experience visually using modifiable motion graphics. Methods A custom-designed software was developed to enable users to modify a motion graphic in real-time. The motion graphics were designed to depict realistic visualizations of pain quality descriptors, such as tingling and burning. Participants (N = 34) received an electrical stimulation protocol known to elicit sensations of tingling. The protocol consisted of eight stimulation intensities ranging from 2—6mA delivered, in a randomized fashion and repeated three times, to the index finger. Immediately after each stimulus, participants drew the area of the evoked sensation on a digital body chart of the hand. Participants then modified the motion graphic of tingling by adjusting two parameters, namely the speed (rate of dots disappearing and re-appearing) and density of these dots in the drawn area. Then, participants rated the perceived intensity and selected the most appropriate pain quality descriptor. Results There was an increase in the area, density, and perceived intensity ratings as the electrical stimulation intensity increased (P<0.001). The density of the motion graphic, but not speed, correlated with perceived intensity ratings (0.69, P<0.001) and electrical stimulation intensities (0.63, P<0.01). The descriptor ‘tingling’ was predominantly selected in the range of 3–4.5mA and was often followed by ‘stabbing’ as the electrical intensity increased. Discussion The motion graphic tested was perceived to reflect a tingling sensation, the stimulation protocol elicited a tingling sensation, and participants adjusted one of the two motion graphic features systematically. In conclusion, an embodied sensation, such as tingling, maybe visually represented similarly between individuals. These findings create research, clinical, and commercial opportunities that utilize psychophysics to explore, visualize, and quantify changes in embodied sensory experiences in response to known stimuli.

Keywords: motion; stimulation; motion graphics; motion graphic; intensity; modifiable motion

Journal Title: PLoS ONE
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.