There is concern that influenza vaccine effectiveness (VE) may be attenuated by passage in eggs during manufacture. We compared quadrivalent cell-culture vaccine with egg-based vaccines, most of which were trivalent,… Click to show full abstract
There is concern that influenza vaccine effectiveness (VE) may be attenuated by passage in eggs during manufacture. We compared quadrivalent cell-culture vaccine with egg-based vaccines, most of which were trivalent, against influenza A and B during 2017–2018 when A(H3N2) and B/Yamagata (present only in quadrivalent vaccines) predominated. We retrospectively examined risk of PCR-confirmed influenza A and B in members of Kaiser Permanente Northern California aged 4–64 years. We estimated the relative VE (rVE) of cell-culture vaccine versus egg-based vaccines, and the absolute VE (aVE) of each vaccine comparing vaccinated to unvaccinated individuals. Analyses used Cox regression with a calendar timeline, stratified by birth year, and adjusted for demographics, co-morbidities and utilization. One-third (1,016,965/3,053,248) of the population was vaccinated; 932,545 (91.7% of vaccinees) received egg-based and 84,420 (8.3%) received cell-culture vaccines. The rVE against influenza A was 8.0% (95% CI: –10, 23); aVE was 31.7% (CI: 18.7, 42.6) for cell-culture and 20.1% (CI: 14.5, 25.4) for egg-based vaccines. The rVE against influenza B was 39.6% (CI: 27.9, 49.3); aVE was 40.9% (CI: 30, 50.1) for cell-culture and 9.7% (CI 3.5, 15.6) for egg-based trivalent vaccines. Inclusion of the B/Yamagata lineage in the quadrivalent cell-based vaccine provided better protection against influenza B but vaccine effectiveness against influenza A was low for both the cell-culture vaccine and the egg-based vaccines. Improving influenza vaccines requires ongoing comparative vaccine effectiveness monitoring.
               
Click one of the above tabs to view related content.