LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A between-herd data-driven stochastic model to explore the spatio-temporal spread of hepatitis E virus in the French pig production network

Photo from wikipedia

Hepatitis E virus is a zoonotic pathogen for which pigs are recognized as the major reservoir in industrialised countries. A multiscale model was developed to assess the HEV transmission and… Click to show full abstract

Hepatitis E virus is a zoonotic pathogen for which pigs are recognized as the major reservoir in industrialised countries. A multiscale model was developed to assess the HEV transmission and persistence pattern in the pig production sector through an integrative approach taking into account within-farm dynamics and animal movements based on actual data. Within-farm dynamics included both demographic and epidemiological processes. Direct contact and environmental transmission routes were considered along with the possible co-infection with immunomodulating viruses (IMVs) known to modify HEV infection dynamics. Movements were limited to 3,017 herds forming the largest community on the swine commercial network in France and data from the national pig movement database were used to build the contact matrix. Between-herd transmission was modelled by coupling within-herd and network dynamics using the SimInf package. Different introduction scenarios were tested as well as a decrease in the prevalence of IMV-infected farms. After introduction of a single infected gilt, the model showed that the transmission pathway as well as the prevalence of HEV-infected pigs at slaughter age were affected by the type of the index farm, the health status of the population and the type of the infected farms. These outcomes could help design HEV control strategies at a territorial scale based on the assessment of the farms’ and network’s risk.

Keywords: pig production; network; model; hepatitis virus; herd

Journal Title: PLoS ONE
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.