LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimating the potential impact of behavioral public health interventions nationally while maintaining agreement with global patterns on relative risks

Photo from wikipedia

Objective This paper introduces a novel method to evaluate the local impact of behavioral scenarios on disease prevalence and burden with representative individual level data while ensuring that the model… Click to show full abstract

Objective This paper introduces a novel method to evaluate the local impact of behavioral scenarios on disease prevalence and burden with representative individual level data while ensuring that the model is in agreement with the qualitative patterns of global relative risk (RR) estimates. The method is used to estimate the impact of behavioral scenarios on the burden of disease due to ischemic heart disease (IHD) and diabetes in the Turkish adult population. Methods Disease specific Hierarchical Bayes (HB) models estimate the individual disease probability as a function of behaviors, demographics, socio-economics and other controls, where constraints are specified based on the global RR estimates. The simulator combines the counterfactual disease probability estimates with disability adjusted life year (DALY)-per-prevalent-case estimates and rolls up to the targeted population level, thus reflecting the local joint distribution of exposures. The Global Burden of Disease (GBD) 2016 study meta-analysis results guide the analysis of the Turkish National Health Surveys (2008 to 2016) that contain more than 90 thousand observations. Findings The proposed Qualitative Informative HB models do not sacrifice predictive accuracy versus benchmarks (logistic regression and HB models with non-informative and numerical informative priors) while agreeing with the global patterns. In the Turkish adult population, Increasing Physical Activity reduces the DALYs substantially for both IHD by 8.6% (6.4% 11.2%), and Diabetes by 8.1% (5.8% 10.6%), (90% uncertainty intervals). Eliminating Smoking and Second-hand Smoke predominantly decreases the IHD burden 13.1% (10.4% 15.8%) versus Diabetes 2.8% (1.1% 4.6%). Increasing Fruit and Vegetable Consumption, on the other hand, reduces IHD DALYs by 4.1% (2.8% 5.4%) while not improving the Diabetes burden 0.1% (0% 0.1%). Conclusion While the national RR estimates are in qualitative agreement with the global patterns, the scenario impact estimates are markedly different than the attributable risk estimates from the GBD analysis and allow evaluation of practical scenarios with multiple behaviors.

Keywords: global patterns; disease; agreement global; impact behavioral; health

Journal Title: PLoS ONE
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.