Deafness leads to brain modifications that are generally associated with a cross-modal activity of the auditory cortex, particularly for visual stimulations. In the present study, we explore the cortical processing… Click to show full abstract
Deafness leads to brain modifications that are generally associated with a cross-modal activity of the auditory cortex, particularly for visual stimulations. In the present study, we explore the cortical processing of biological motion that conveyed either non-communicative (pantomimes) or communicative (emblems) information, in early-deaf and hearing individuals, using fMRI analyses. Behaviorally, deaf individuals showed an advantage in detecting communicative gestures relative to hearing individuals. Deaf individuals also showed significantly greater activation in the superior temporal cortex (including the planum temporale and primary auditory cortex) than hearing individuals. The activation levels in this region were correlated with deaf individuals’ response times. This study provides neural and behavioral evidence that cross-modal plasticity leads to functional advantages in the processing of biological motion following lifelong auditory deprivation.
               
Click one of the above tabs to view related content.