LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Weighted-persistent-homology-based machine learning for RNA flexibility analysis

Photo by thinkmagically from unsplash

With the great significance of biomolecular flexibility in biomolecular dynamics and functional analysis, various experimental and theoretical models are developed. Experimentally, Debye-Waller factor, also known as B-factor, measures atomic mean-square… Click to show full abstract

With the great significance of biomolecular flexibility in biomolecular dynamics and functional analysis, various experimental and theoretical models are developed. Experimentally, Debye-Waller factor, also known as B-factor, measures atomic mean-square displacement and is usually considered as an important measurement for flexibility. Theoretically, elastic network models, Gaussian network model, flexibility-rigidity model, and other computational models have been proposed for flexibility analysis by shedding light on the biomolecular inner topological structures. Recently, a topology-based machine learning model has been proposed. By using the features from persistent homology, this model achieves a remarkable high Pearson correlation coefficient (PCC) in protein B-factor prediction. Motivated by its success, we propose weighted-persistent-homology (WPH)-based machine learning (WPHML) models for RNA flexibility analysis. Our WPH is a newly-proposed model, which incorporate physical, chemical and biological information into topological measurements using a weight function. In particular, we use local persistent homology (LPH) to focus on the topological information of local regions. Our WPHML model is validated on a well-established RNA dataset, and numerical experiments show that our model can achieve a PCC of up to 0.5822. The comparison with the previous sequence-information-based learning models shows that a consistent improvement in performance by at least 10% is achieved in our current model.

Keywords: persistent homology; model; flexibility analysis; flexibility

Journal Title: PLoS ONE
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.