LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fingerprinting of hatchery haplotypes and acquisition of genetic information by whole-mitogenome sequencing of masu salmon, Oncorhynchus masou masou, in the Kase River system, Japan

Photo from wikipedia

Stocking hatchery fish can lead to disturbance and extinction of the local indigenous population. Masu salmon Oncorhynchus masou masou, which is endemic across Japan, is a commonly stocked fish for… Click to show full abstract

Stocking hatchery fish can lead to disturbance and extinction of the local indigenous population. Masu salmon Oncorhynchus masou masou, which is endemic across Japan, is a commonly stocked fish for recreational fishing in Japan. To conserve the indigenous resource, their genetic information is required, however, especially on Kyushu Island, the paucity of genetic information for this species has hindered proper resource management. Here, to identify hatchery mitogenome haplotypes of this species, stocked in the Kase River system, Kyushu Island, Japan, and to provide mitogenomic information for the resource management of this species, we analyzed the whole-mitogenome of masu salmon in this river system and several hatcheries potentially used for stocking. Whole-mitogenome sequencing clearly identified hatchery haplotypes, like fingerprints: among the 21 whole-mitogenome haplotypes obtained, six were determined to be hatchery haplotypes. These hatchery haplotypes were distributed in 13 out of 17 sites, suggesting that informal stocking of O. m. masou has been performed widely across this river system. The population of no hatchery haplotypes mainly belonged to clade I, a clade not found in Hokkaido Island in previous studies. Sites without hatchery haplotypes, and the non-hatchery haplotypes in clade I might be candidates for conservation as putative indigenous resources. The whole-mitogenome haplotype analysis also clarified that the same reared strain was used in multiple hatcheries. Analysis of molecular variance suggested that stocked hatchery haplotypes reduce the genetic variation among populations in this river system. It will be necessary to pay attention to genetic fluctuations so that the resources of this river system will not deteriorate further. The single nucleotide polymorphism data obtained here could be used for resource management in this and other rivers: e.g., for monitoring of informal stocking and stocked hatchery fishes, and/or putative indigenous resources.

Keywords: river system; hatchery; hatchery haplotypes; whole mitogenome

Journal Title: PLoS ONE
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.