Given the ever-increasing amount of high-dimensional and complex omics data becoming available, it is increasingly important to discover simple but effective methods of analysis. Divergence analysis transforms each entry of… Click to show full abstract
Given the ever-increasing amount of high-dimensional and complex omics data becoming available, it is increasingly important to discover simple but effective methods of analysis. Divergence analysis transforms each entry of a high-dimensional omics profile into a digitized (binary or ternary) code based on the deviation of the entry from a given baseline population. This is a novel framework that is significantly different from existing omics data analysis methods: it allows digitization of continuous omics data at the univariate or multivariate level, facilitates sample level analysis, and is applicable on many different omics platforms. The divergence package, available on the R platform through the Bioconductor repository collection, provides easy-to-use functions for carrying out this transformation. Here we demonstrate how to use the package with data from the Cancer Genome Atlas.
               
Click one of the above tabs to view related content.