LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular dynamics study on the effects of charged amino acid distribution under low pH condition to the unfolding of hen egg white lysozyme and formation of beta strands

Photo from wikipedia

Aggregation of unfolded or misfolded proteins into amyloid fibrils can cause various diseases in humans. However, the fibrils synthesized in vitro can be developed toward useful biomaterials under some physicochemical… Click to show full abstract

Aggregation of unfolded or misfolded proteins into amyloid fibrils can cause various diseases in humans. However, the fibrils synthesized in vitro can be developed toward useful biomaterials under some physicochemical conditions. In this study, atomistic molecular dynamics simulations were performed to address the mechanism of beta-sheet formation of the unfolded hen egg-white lysozyme (HEWL) under a high temperature and low pH. Simulations of the protonated HEWL at pH 2 and the non-protonated HEWL at pH 7 were performed at the highly elevated temperature of 450 K to accelerate the unfolding, followed by the 333 K temperature to emulate some previous in vitro studies. The simulations showed that HEWL unfolded faster, and higher beta-strand contents were observed at pH 2. In addition, one of the simulation replicas at pH 2 showed that the beta-strand forming sequence was consistent with the ‘K-peptide’, proposed as the core region for amyloidosis in previous experimental studies. Beta-strand formation mechanisms at the earlier stage of amyloidosis were explained in terms of the radial distribution of the amino acids. The separation between groups of positively charged sidechains from the hydrophobic core corresponded to the clustering of the hydrophobic residues and beta-strand formation.

Keywords: white lysozyme; hen egg; molecular dynamics; beta strand; egg white; formation

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.