LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modelling urban vibrancy with mobile phone and OpenStreetMap data

Photo from wikipedia

The concept of urban vibrancy has become increasingly important in the study of cities. A vibrant urban environment is an area of a city with high levels of human activity… Click to show full abstract

The concept of urban vibrancy has become increasingly important in the study of cities. A vibrant urban environment is an area of a city with high levels of human activity and interactions. Traditionally, studying our cities and what makes them vibrant has been very difficult, due to challenges in data collection on urban environments and people’s location and interactions. Here, we rely on novel sources of data to investigate how different features of our cities may relate to urban vibrancy. In particular, we explore whether there are any differences in which urban features make an environment vibrant for different age groups. We perform this quantitative analysis by extracting urban features from OpenStreetMap and the Italian census, and using them in spatial models to describe urban vibrancy. Our analysis shows a strong relationship between urban features and urban vibrancy, and particularly highlights the importance of third places, which are urban places offering opportunities for social interactions. Our findings provide evidence that a combination of mobile phone data with crowdsourced urban features can be used to better understand urban vibrancy.

Keywords: urban features; urban vibrancy; mobile phone; modelling urban; vibrancy

Journal Title: PLoS ONE
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.