LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple imputation with compatibility for high-dimensional data

Photo from wikipedia

Multiple Imputation (MI) is always challenging in high dimensional settings. The imputation model with some selected number of predictors can be incompatible with the analysis model leading to inconsistent and… Click to show full abstract

Multiple Imputation (MI) is always challenging in high dimensional settings. The imputation model with some selected number of predictors can be incompatible with the analysis model leading to inconsistent and biased estimates. Although compatibility in such cases may not be achieved, but one can obtain consistent and unbiased estimates using a semi-compatible imputation model. We propose to relax the lasso penalty for selecting a large set of variables (at most n). The substantive model that also uses some formal variable selection procedure in high-dimensional structures is then expected to be nested in this imputation model. The resulting imputation model will be semi-compatible with high probability. The likelihood estimates can be unstable and can face the convergence issues as the number of variables becomes nearly as large as the sample size. To address these issues, we further propose to use a ridge penalty for obtaining the posterior distribution of the parameters based on the observed data. The proposed technique is compared with the standard MI software and MI techniques available for high-dimensional data in simulation studies and a real life dataset. Our results exhibit the superiority of the proposed approach to the existing MI approaches while addressing the compatibility issue.

Keywords: high dimensional; compatibility; imputation; multiple imputation; imputation model

Journal Title: PLoS ONE
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.