LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparing predictors of sentence self-paced reading times: Syntactic complexity versus transitional probability metrics

Photo from wikipedia

When estimating the influence of sentence complexity on reading, researchers typically opt for one of two main approaches: Measuring syntactic complexity (SC) or transitional probability (TP). Comparisons of the predictive… Click to show full abstract

When estimating the influence of sentence complexity on reading, researchers typically opt for one of two main approaches: Measuring syntactic complexity (SC) or transitional probability (TP). Comparisons of the predictive power of both approaches have yielded mixed results. To address this inconsistency, we conducted a self-paced reading experiment. Participants read sentences of varying syntactic complexity. From two alternatives, we selected the set of SC and TP measures, respectively, that provided the best fit to the self-paced reading data. We then compared the contributions of the SC and TP measures to self-paced reading times when entered into the same model. Our results showed that while both measures explained significant portions of variance in reading times (over and above control variables: word/sentence length, word frequency and word position) when included in independent models, their contributions changed drastically when SC and TP were entered into the same model. Specifically, we only observed significant effects of TP. We conclude that in our experiment the control variables explained the bulk of variance. When comparing the small effects of SC and TP, the effects of TP appear to be more robust.

Keywords: paced reading; reading times; self paced; syntactic complexity

Journal Title: PLoS ONE
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.