LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Research on insulator defect detection algorithm of transmission line based on CenterNet

Photo by bermixstudio from unsplash

The reliability of the insulator has directly affected the stable operation of electric power system. The detection of defective insulators has always been an important issue in smart grid systems.… Click to show full abstract

The reliability of the insulator has directly affected the stable operation of electric power system. The detection of defective insulators has always been an important issue in smart grid systems. However, the traditional transmission line detection method has low accuracy and poor real-time performance. We present an insulator defect detection method based on CenterNet. In order to improve detection efficiency, we simplified the backbone network. In addition, an attention mechanism is utilized to suppress useless information and improve the accuracy of network detection. In image preprocessing, the blurring of some detected images results in the samples being discarded, so we use super-resolution reconstruction algorithm to reconstruct the blurred images to enhance the dataset. The results show that the AP of the proposed method reaches 96.16% and the reasoning speed reaches 30FPS under the test condition of NVIDIA GTX 1080 test conditions. Compared with Faster R-CNN, YOLOV3, RetinaNet and FSAF, the detection accuracy of proposed method is greatly improved, which fully proves the effectiveness of the proposed method.

Keywords: detection; defect detection; insulator defect; transmission line; method; insulator

Journal Title: PLoS ONE
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.