LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A proximity-based in silico approach to identify redox-labile disulfide bonds: The example of FVIII

Photo from wikipedia

Allosteric disulfide bonds permit highly responsive, transient ‘switch-like’ properties that are ideal for processes like coagulation and inflammation that require rapid and localised responses to damage or injury. Haemophilia A… Click to show full abstract

Allosteric disulfide bonds permit highly responsive, transient ‘switch-like’ properties that are ideal for processes like coagulation and inflammation that require rapid and localised responses to damage or injury. Haemophilia A (HA) is a rare bleeding disorder managed with exogenous coagulation factor(F) VIII products. FVIII has eight disulfide bonds and is known to be redox labile, but it is not known how reduction/oxidation affects the structure-function relationship, or its immunogenicity—a serious complication for 30% severe HA patients. Understanding how redox-mediated changes influence FVIII can inform molecular engineering strategies aimed at improving activity and stability, and reducing immunogenicity. FVIII is a challenging molecule to work with owing to its poor expression and instability so, in a proof-of-concept study, we used molecular dynamics (MD) to identify which disulfide bonds were most likely to be reduced and how this would affect structure/function; results were then experimentally verified. MD identified Cys1899-Cys1903 disulfide as the most likely to undergo reduction based on energy and proximity criteria. Further MD suggested this reduction led to a more open conformation. Here we present our findings and highlight the value of MD approaches.

Keywords: proximity based; disulfide; based silico; redox labile; disulfide bonds

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.