This study was designed to explore the therapeutics and the mechanisms of a patented and marked gastric acid and intestine juice-resistant probiotics Bifidobacterium lactis BL-99 (B. lactis BL-99) on the… Click to show full abstract
This study was designed to explore the therapeutics and the mechanisms of a patented and marked gastric acid and intestine juice-resistant probiotics Bifidobacterium lactis BL-99 (B. lactis BL-99) on the intestinal inflammation and functions in the zebrafish models. After feeding for 6 hours, B. lactis BL-99 was fully retained in the larval zebrafish intestinal tract and stayed for over 24 hours. B. lactis BL-99 promoted the intestinal motility and effectively alleviated aluminum sulfate-induced larval zebrafish constipation (p < 0.01). Irregular high glucose diet induced adult zebrafish intestinal functional and metabolic disorders. After fed with B. lactis BL-99, IL-1β gene expression was significantly down-regulated, and IL-10 and IL-12 gene levels were markedly up-regulated in this model (p < 0.05). The intestinal lipase activity was elevated in the adult zebrafish intestinal functional disorder model after B. lactis BL-99 treatment (p < 0.05), but tryptase content had no statistical changes (p > 0.05). B. lactis BL-99 improved the histopathology of the adult zebrafish intestinal inflammation, increased the goblet cell numbers, and up-and-down metabolites were markedly recovered after treatment of B. lactis BL-99 (p < 0.05). These results suggest that B. lactis BL-99 could relieve intestinal inflammation and promote intestinal functions, at least in part, through modulating intestinal and microbial metabolism to maintain intestinal health.
               
Click one of the above tabs to view related content.