LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Segmentation of HE-stained meningioma pathological images based on pseudo-labels

Photo from wikipedia

Biomedical research is inseparable from the analysis of various histopathological images, and hematoxylin-eosin (HE)-stained images are one of the most basic and widely used types. However, at present, machine learning… Click to show full abstract

Biomedical research is inseparable from the analysis of various histopathological images, and hematoxylin-eosin (HE)-stained images are one of the most basic and widely used types. However, at present, machine learning based approaches of the analysis of this kind of images are highly relied on manual labeling of images for training. Fully automated processing of HE-stained images remains a challenging task due to the high degree of color intensity, size and shape uncertainty of the stained cells. For this problem, we propose a fully automatic pixel-wise semantic segmentation method based on pseudo-labels, which concerns to significantly reduce the manual cell sketching and labeling work before machine learning, and guarantees the accuracy of segmentation. First, we collect reliable training samples in a unsupervised manner based on K-means clustering results; second, we use full mixup strategy to enhance the training images and to obtain the U-Net model for the nuclei segmentation from the background. The experimental results based on the meningioma pathology image dataset show that the proposed method has good performance and the pathological features obtained statistically based on the segmentation results can be used to assist in the clinical grading of meningiomas. Compared with other machine learning strategies, it can provide a reliable reference for clinical research more effectively.

Keywords: based pseudo; segmentation stained; pseudo labels; machine learning; segmentation

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.