LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Applying height differentiation of tactile symbols to reduce the minimum horizontal distances between them on tactile maps

Photo from wikipedia

In this paper, we wanted to verify the hypothesis that extruding cartographic symbols on tactile maps to different heights might allow reducing the minimum (suggested in the literature) horizontal distances… Click to show full abstract

In this paper, we wanted to verify the hypothesis that extruding cartographic symbols on tactile maps to different heights might allow reducing the minimum (suggested in the literature) horizontal distances between them, without impacting the overall map’s legibility. This approach might allow preparing tactile maps in smaller scales and thus, reducing production cost, or putting additional spatial information on the same map sheet that would not fit otherwise. To verify the hypothesis we have prepared 6 different stimuli variants with or without height differentiation applied and different horizontal distances between tactile symbols adopted (1 mm, 2 mm and 3 mm). In the controlled study sessions with 30 participants with visual impairments we have measured the times required for solving 3 different spatial tasks on 3D printed tactile stimuli. We have also performed qualitative analysis to learn participants’ opinions about the proposed design and materials used. It turns out that applying height differentiation not only results in shorter times required for solving spatial tasks but is also considered by blind individuals as a convenient improvement in terms of use comfort and allows reduction of recommended minimum horizontal distances between symbols on tactile maps.

Keywords: tactile symbols; height differentiation; tactile maps; horizontal distances; distances tactile

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.