LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Machine learning prediction of non-attendance to postpartum glucose screening and subsequent risk of type 2 diabetes following gestational diabetes

Photo from wikipedia

Objective The aim of the present study was to identify the factors associated with non-attendance of immediate postpartum glucose test using a machine learning algorithm following gestational diabetes mellitus (GDM)… Click to show full abstract

Objective The aim of the present study was to identify the factors associated with non-attendance of immediate postpartum glucose test using a machine learning algorithm following gestational diabetes mellitus (GDM) pregnancy. Method A retrospective cohort study of all GDM women (n = 607) for postpartum glucose test due between January 2016 and December 2019 at the George Eliot Hospital NHS Trust, UK. Results Sixty-five percent of women attended postpartum glucose test. Type 2 diabetes was diagnosed in 2.8% and 21.6% had persistent dysglycaemia at 6–13 weeks post-delivery. Those who did not attend postpartum glucose test seem to be younger, multiparous, obese, and continued to smoke during pregnancy. They also had higher fasting glucose at antenatal oral glucose tolerance test. Our machine learning algorithm predicted postpartum glucose non-attendance with an area under the receiver operating characteristic curve of 0.72. The model could achieve a sensitivity of 70% with 66% specificity at a risk score threshold of 0.46. A total of 233 (38.4%) women attended subsequent glucose test at least once within the first two years of delivery and 24% had dysglycaemia. Compared to women who attended postpartum glucose test, those who did not attend had higher conversion rate to type 2 diabetes (2.5% vs 11.4%; p = 0.005). Conclusion Postpartum screening following GDM is still poor. Women who did not attend postpartum screening appear to have higher metabolic risk and higher conversion to type 2 diabetes by two years post-delivery. Machine learning model can predict women who are unlikely to attend postpartum glucose test using simple antenatal factors. Enhanced, personalised education of these women may improve postpartum glucose screening.

Keywords: postpartum; machine learning; type diabetes; glucose test; postpartum glucose

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.