LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cell tip growth underlies injury response of marine macroalgae

Photo from wikipedia

Regeneration is a widely observed phenomenon by which the integrity of an organism is recovered after damage. To date, studies on the molecular and cellular mechanisms of regeneration have been… Click to show full abstract

Regeneration is a widely observed phenomenon by which the integrity of an organism is recovered after damage. To date, studies on the molecular and cellular mechanisms of regeneration have been limited to a handful of model multicellular organisms. Here, the regeneration ability of marine macroalgae (Rhodophyta, Phaeophyceae, Chlorophyta) was systematically surveyed after thallus severing. Live cell imaging on severed thalli uncovered the cellular response to the damage. Three types of responses–budding, rhizoid formation, and/or sporulation–were observed in 25 species among 66 examined, proving the high potential of regeneration of macroalgae. The cellular and nuclear dynamics were monitored during cell repair or rhizoid formation of four phylogenetically diverged species, and the tip growth of the cells near the damaged site was observed as a common response. Nuclear translocation followed tip growth, enabling overall distribution of multinuclei or central positioning of the mononucleus. In contrast, the control of cell cycle events, such as nuclear division and septation, varied in these species. These observations showed that marine macroalgae utilise a variety of regeneration pathways, with some common features. This study also provides a novel methodology of live cell imaging in macroalgae.

Keywords: response; tip growth; macroalgae; marine macroalgae; cell; regeneration

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.