In this study, we aimed at exploring the feasibility of functional near-infrared spectroscopy (fNIRS) for studying the observation and/or motor imagination of various postural tasks. Thirteen healthy adult subjects followed… Click to show full abstract
In this study, we aimed at exploring the feasibility of functional near-infrared spectroscopy (fNIRS) for studying the observation and/or motor imagination of various postural tasks. Thirteen healthy adult subjects followed five trials of static and dynamic standing balance tasks, throughout three different experimental setups of action observation (AO), a combination of action observation and motor imagery (AO+MI), and motor imagery (MI). During static and dynamic standing tasks, both the AO+MI and MI experiments revealed that many channels in prefrontal or motor regions are significantly activated while the AO experiment showed almost no significant increase in activations in most of the channels. The contrast between static and dynamic standing tasks showed that with more demanding balance tasks, relative higher activation patterns were observed, particularly during AO and in AO+MI experiments in the frontopolar area. Moreover, the AO+MI experiment revealed a significant difference in premotor and supplementary motor cortices that are related to balance control. Furthermore, it has been observed that the AO+MI experiment induced relatively higher activation patterns in comparison to AO or MI alone. Remarkably, the results of this work match its counterpart from previous functional magnetic resonance imaging studies. Therefore, they may pave the way for using the fNIRS as a diagnostic tool for evaluating the performance of the non-physical balance training during the rehabilitation period of temporally immobilized patients.
               
Click one of the above tabs to view related content.