LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microbial induced calcite precipitation can consolidate martian and lunar regolith simulants

We demonstrate that Microbial Induced Calcite Precipitation (MICP) can be utilized for creation of consolidates of Martian Simulant Soil (MSS) and Lunar Simulant Soil (LSS) in the form of a… Click to show full abstract

We demonstrate that Microbial Induced Calcite Precipitation (MICP) can be utilized for creation of consolidates of Martian Simulant Soil (MSS) and Lunar Simulant Soil (LSS) in the form of a ‘brick’. A urease producer bacterium, Sporosarcina pasteurii, was used to induce the MICP process for the both simulant soils. An admixture of guar gum as an organic polymer and NiCl2, as bio- catalyst to enhance urease activity, was introduced to increase the compressive strength of the biologically grown bricks. A casting method was utilized for a slurry consisting of the appropriate simulant soil and microbe; the slurry over a few days consolidated in the form of a ‘brick’ of the desired shape. In case of MSS, maximum strength of 3.3 MPa was obtained with 10mM NiCl2 and 1% guar gum supplementation whereas in case of LSS maximum strength of 5.65 Mpa was obtained with 1% guar gum supplementation and 10mM NiCl2. MICP mediated consolidation of the simulant soil was confirmed with field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and thermogravimetry (TG). Our work demonstrates a biological approach with an explicit casting method towards manufacturing of consolidated structures using extra-terrestrial regolith simulant; this is a promising route for in situ development of structural elements on the extra-terrestrial habitats.

Keywords: microbial induced; simulant soil; calcite precipitation; induced calcite

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.