LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrated model for Food-Energy-Water (FEW) nexus to study global sustainability: The water compartments and water stress analysis

Photo from wikipedia

Analysis of global sustainability is incomplete without an examination of the FEW nexus. Here, we modify the Generalized Global Sustainability Model (GGSM) to incorporate the global water system and project… Click to show full abstract

Analysis of global sustainability is incomplete without an examination of the FEW nexus. Here, we modify the Generalized Global Sustainability Model (GGSM) to incorporate the global water system and project water stress on the global and regional levels. Five key water-consuming sectors considered here are agricultural, municipal, energy, industry, and livestock. The regions are created based on the continents, namely, Africa, Asia, Europe, North America, Oceania, and South America. The sectoral water use intensities and geographical distribution of the water demand were parameterized using historical data. A more realistic and novel indicator is proposed to assess the water situation: net water stress. It considers the water whose utility can be harvested, within economic and technological considerations, rather than the total renewable water resources. Simulation results indicate that overall global water availability is adequate to support the rising water demand in the next century. However, regional heterogeneity of water availability leads to high water stress in Africa. Africa’s maximum net water stress is 140%, so the water demand is expected to be more than total exploitable water resources. Africa might soon cross the 100% threshold/breakeven in 2022. For a population explosion scenario, the intensity of the water crisis for Africa and Asia is expected to rise further, and the maximum net water stress would reach 149% and 97%, respectively. The water use efficiency improvement for the agricultural sector, which reduces the water demand by 30%, could help to delay this crisis significantly.

Keywords: water demand; water stress; water; global sustainability

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.