LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differential Hebbian learning with time-continuous signals for active noise reduction

Photo from wikipedia

Spike timing-dependent plasticity, related to differential Hebb-rules, has become a leading paradigm in neuronal learning, because weights can grow or shrink depending on the timing of pre- and post-synaptic signals.… Click to show full abstract

Spike timing-dependent plasticity, related to differential Hebb-rules, has become a leading paradigm in neuronal learning, because weights can grow or shrink depending on the timing of pre- and post-synaptic signals. Here we use this paradigm to reduce unwanted (acoustic) noise. Our system relies on heterosynaptic differential Hebbian learning and we show that it can efficiently eliminate noise by up to −140 dB in multi-microphone setups under various conditions. The system quickly learns, most often within a few seconds, and it is robust with respect to different geometrical microphone configurations, too. Hence, this theoretical study demonstrates that it is possible to successfully transfer differential Hebbian learning, derived from the neurosciences, into a technical domain.

Keywords: noise; continuous signals; time continuous; differential hebbian; hebbian learning; learning time

Journal Title: PLoS ONE
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.